
Automated Parameter Tuning
for Land Ice Simulations

Xplore Project Report – Stanford CME 291, Spring 2021, #Credits = 3

Carolyn Kao
Institute for Computational and Mathematical Engineering

Stanford University
chkao831@stanford.edu

June 3, 2021

1 Mentors

• Jerry Watkins, Ph.D., Sandia National Laboratories
Jerry Watkins is a computational scientist in the Quantitative Modeling & Analysis De-
partment at Sandia National Laboratories in Livermore, CA. His research focuses on the
modeling and simulation of complex physical phenomena in fields such as computational
fluid dynamics, computational solid mechanics and climate modeling. He has an interest
in the development of high-order numerical methods for next generation supercomputing
platforms. He received his PhD in Aeronautics & Astronautics from Stanford University
under the guidance of Professor Antony Jameson.

• Irina Tezaur, Ph.D., Sandia National Laboratories
Dr. Tezaur is currently a Principal Member of Technical Staff in the Quantitative Modeling
& Analysis Department at Sandia National Laboratories in Livermore, California. She
began her research career at Sandia in 2007. Since then, she has had the opportunity to
experience research in three of the lab’s centers, the Engineering Sciences Center, the Center
for Computing Research and the Center for Homeland Security, spanning Sandia’s two main
sites (Albuquerque, NM and Livermore, CA). Dr. Tezaur holds a Ph.D. in Computational
& Mathematical Engineering from Stanford University, in addition to a B.A. and M.A.
in Mathematics from the University of Pennsylvania. Her research focuses broadly on
developing algorithms and software to enable the modeling and simulation of complex
multi-scale and multi-physics problems using high-performance computing. Her research
interests include numerical solution to partial differential equations (PDEs), mixed/hybrid
finite elements, reduced order modeling (ROM), multi-scale coupling methods, and climate
modeling.

2 Faculty Sponsors

• Trevor Hastie, Professor of Statistics at Stanford University

• Eric Darve, Professor of Mechanical Engineering at Stanford University

3 Project Background and Problem Statement

Global mean sea-level is rising at a rate of 3.2 mm/year and this rate is increasing, with the latest
studies suggesting possible increase in sea-level of 0.3-2.5 m by 2100, due to melting of the polar ice
sheets (Greenland, Antarctica). With this in mind, Sandia National Laboratories have been developing
the MPAS-Albany Land Ice (MALI) Model, as part of the DOE’s Energy Exascale Earth System
Model, to provide actionable projections of 21st century sea-level rise and support national security
missions on high performance computing (HPC) systems.



Our team focused on building a framework for each type of data to facilitate the automated parameter
tuning for ice sheet simulations of Earth’s polar ice sheets. This is part of an ongoing effort to
modernize climate software and develop more accurate and reliable models for probabilistic sea-level
projections. We explored a subset of the input parameter space to tune performance, utilized grid and
random search for optimization, and automated the tuning process with an efficient framework.

4 Data

Data is constructed and retrieved from Albany Land Ice1, developed by Sandia National Laboratories.
Input files are generated in yaml format. Its corresponding outputs would be extracted into json text
files upon running the performance test.

Input In terms of defining the input parameter space to tune, we narrow down our focus to specific
parameters on the basis of past experience and domain knowledge from researchers. Then, we
proceed to focus on maneuvering the parameters of mySmoothers and design our program such that
it provides an option to tune parameters on either a single smoother or multiple ones at a time.

1 mySmoother1:
2 type:
3 ParameterList:
4 mySmoother4: # w/similar structures; omitted due to space constraint

where the ParameterList options that we’ve explored for each smoother follows,

1 type: RELAXATION
2 ParameterList:
3 ’relaxation: type’: MT Gauss -Seidel
4 ’relaxation: sweeps ’: positive integer
5 ’relaxation: damping factor ’: positive real number
6 type: RELAXATION
7 ParameterList:
8 ’relaxation: type’: Two -stage Gauss -Seidel
9 ’relaxation: sweeps ’: positive integer

10 ’relaxation: inner damping factor ’: positive real number
11 type: CHEBYSHEV
12 ParameterList:
13 ’chebyshev: degree ’: positive integer
14 ’chebyshev: ratio eigenvalue ’: positive real number
15 ’chebyshev: eigenvalue max iterations ’: positive integer

Output Once a simulation is performed in Albany Land Ice, checks are made to ensure the solution
is correct. For solution that passes these checks, we focus on observing time_NOX as the sum
of NOX Total Linear Solve and NOX Total Preconditioner Construction as the output
evaluation metric.

1 "passed": true ,
2 "timers": {
3 # some timers are omitted due to the space constraint
4 "Albany Total Time:": 34.4281 ,
5 "NOX Total Linear Solve:": 7.33092 ,
6 "NOX Total Preconditioner Construction:": 6.2781
7 }

4.1 Offline data

Data are generated with fixed software versions and hardware configurations. For example, we
utilized the ICME GPU cluster to generate offline data of a specific version of Albany.

1https://github.com/SNLComputation/Albany

2

https://github.com/SNLComputation/Albany


4.2 Real-time data

Data are generated nightly with potentially new software versions and hardware configurations. For
example, real-time data for Sandia’s Blake (CPU) and Waterman (GPU) test beds are posted on
Github.

5 Methodology

To automate the parameter tuning process, we spend a significant amount of time exploring the
parameter space under various linear solvers using optimization algorithms including Grid Search
and Random Search. In Grid Search, every combination of a preset list of values within a certain
range following a grid-like pattern are run and evaluated. However, in Random Search, the random
combinations of parameters within a range of values are generated.

As the search space grows exponentially with the number of parameters tuned, we initially begin
with a limited choice of input parameters and some discrete values that are separated with relatively
large steps; then, we gradually narrow down the ranges as well as the step sizes to further conduct the
search exhaustively over selected preconditioners with multiple grids of feasible values.

On the other hand, Random Search selects random combinations over the parameter space beyond
the discrete setting, using a random disturbance modeled by a Gaussian probability distribution over
the feasible ranges.

6 Application

6.1 An Offline Autotuning Framework

6.1.1 Implementation

We initiate an offline automated framework that allows users to automatically run multiple simu-
lations over the feasible parameter space. As the offline data is fixed to a specific point in time
(hardware/software), the offline framework runs simulations on the fly. Given an input file, we
apply the optimization methods across the user-defined ranges with a single command. In particular,
the parameter generators for grid search and random search are respectively implemented using
ParameterGrid and ParameterSampler of scikit-learn2.

Based on the updated input parameters by algorithm, the output ctest files, in json format, yield
various timers which serve as the evaluation metrics. Lastly, to demonstrate the tuning results, the
program outputs a pandas dataframe to console and simultaneously exports a csv file to showcase the
numerical results in ascending order by time (specifically, by time_NOX if a performance test passes).

6.1.2 Experiments

We run our offline experiments on both k80 and V100 primarily using ICME-GPU clusters3, depend-
ing on the scope of cases and number of parameters to tune at each time. A sample set of full tuning
ranges is showcased in Appendix A.

At the beginning of the exploration, we set up a wider range of the selected parameters as listed above.
Then, we zoom into finer grain grids once we’re able to narrow down the scope to some subset of the
grids using grid search and random search. Fig. 1 shows a visualization of such a sequential process
while we tune two types of parameters at a time.

2https://scikit-learn.org/stable/modules/classes.html#module-sklearn.model_
selection

3https://icme.stanford.edu/get-involved/resources/hpc-resources

3

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.model_selection
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.model_selection
https://icme.stanford.edu/get-involved/resources/hpc-resources


(a) wide grid
(b) narrower grid (c) narrowest grid

Figure 1: Grid Search on mySmoother1 [relaxation: type = MT Gauss-Seidel]

Note that in Fig. 1, we have the relaxation:type fixed while changing sweeps and damping
factor which are respectively illustrated on x and y axes. The colorbar on the right is used to
indicate the output timers (in seconds) as the evaluation metric. For example, darker shades of blue
correspond to better parameter combinations.

From specific numerical and visual results, we also observe that there exists some noise upon running
the tests. Inputs with similar values sometimes produce significantly different outputs. Hence, we
further refine our offline script such that the user could specify more than one round of simulations of
grid search (from which the median would be extracted)4; for random search, one may specify the
random seed at the beginning of each round for the robustness check and control.

6.2 A Real-time Autotuning Framework

6.2.1 Implementation

Currently, a sets of scripts are running on a nightly basis to post-process the land ice simulation
at Sandia. The real-time autotuning framework runs the random search algorithm, automatically
updating the specified input file and recording history such that the next nightly test will run a new
iteration based on the updated input file. Similarly to the offline version, the corresponding outputs
(timers, etc.) would be automatically extracted and recorded to the history file the next time calling
this script, along with new input information for the next nightly test.

To help one keep track of the day-to-day tuning history, this program exports historical csv files
by chronological order and by performance. Furthermore, at every iteration, we check to see if the
today’s iteration is better than all past iterations. If true, we update [inputfile]_Best.yaml with
the inputs from the current iteration.

6.2.2 Experiments

The real-time framework is currently adopted for simulations using blake (CPU)5 and weaver (GPU)6

of Sandia.

7 Analyses

7.1 Grid Search vs. Random Search

Using the offline framework in Section 6.1, we observe that the Random Search algorithm typically
outperforms the Grid Search one, given the same sample size and similar ranges of inputs. An

4Due to the space constraint, a sample visualization to showcase the noise reduction is moved to Appendix B
for reference.

5https://github.com/ikalash/ikalash.github.io/tree/master/ali/blake_nightly_data
6https://github.com/ikalash/ikalash.github.io/tree/master/ali/weaver_nightly_data

4

https://github.com/ikalash/ikalash.github.io/tree/master/ali/blake_nightly_data
https://github.com/ikalash/ikalash.github.io/tree/master/ali/weaver_nightly_data


example is illustrated below. Using Random Search, with sample size of 352 for each method, we
are able to achieve the best performance of the two (with time = 10.96464 secs) and a slightly lower
mean of time (14.20902 secs) without as many outliers as in Grid Search7.

Time Grid Random
#sample 352 352

time_lowest 11.0720 10.96464
time_mean 14.84668 14.20902

time_sd 2.735190 1.518329

Figure 2 & Table 1: Grid Search vs. Random Search on multiple smoothers

7.2 Manual Tuning vs. Autotuning

This experiment uses a fixed blake/weaver build to process the data using the nightly framework.
Admittedly, we don’t practically run the script in the real daily sense due to the time constraint.
Within the 10-week quarter, it is infeasible for us to get enough data points for analyses. Hence, we
choose to utilize the real-time framework with the random search method to run the ctests in a loop
for 100 iterations.

To evaluate the efficiency of our autotuning framework specified in Section 6.2, we run two nightly
cases (vel and ent) that utilize the same solver to solve dissimilar sets of equations on the same
mesh, using both CPU (blake) and GPU (weaver). This results in having four sets of results to
compare, namely blake_vel, blake_ent, weaver_vel and weaver_ent.

Upon running 100 iterations, we have

Cases Manual Tuning (sec.) Autotuning (sec.) Speedup
blake_vel 3.533972 2.658731 1.33x
blake_ent 3.07725 2.036044 1.51x

weaver_vel 19.13084 16.30672 1.17x
weaver_ent 19.76345 15.00014 1.32x

Table 2: Autotuning Speedup

The “Manual Tuning” column showcases the results that were previously obtained after tuning from
a domain expert at a fixed point in time on a specific software and hardware. Compared to the
hand-tuned results, the autotuner is able to find inputs that were anywhere between 1.17x-1.51x faster
depending on the case.

8 Challenges and Future Work

One thing that we encounter using the brute-force searching algorithm is that given a multiple-level
nested input yaml file, tuning just a few parameters over two levels (smoothers) is already very costly.
Such a high complexity would potentially hinder us from fully exploring an input space with larger
feasible ranges or investigating more parameters beyond what we have until this point. In addition,
even though a significant speedup is seen with our autotuning framework from Table 2, the percentage
of the failure cases is concerning, too.

7Even though Random Search typically outperforms Grid Search, further statistical tests indicate that we
fail to make an assertion that the average timer outputs are significantly different due to the inhomogeneity in
variances by F-test.

5



Cases #Passed Runs #Failed Runs %Failure
blake_vel 70 30 30%
blake_ent 37 63 63%

weaver_vel 71 29 29%
weaver_ent 26 74 74%

Table 3: Failing Percentage

Admittedly, the searching techniques such as Grid Search and Random Search roam the full space
of available parameter values in an isolated way without paying attention to past results. Tuning by
means of these techniques can become a time-consuming challenge especially with large parameters
spaces as we have, since the search space grows exponentially with the number of parameters tuned.
At this point, there’s no direct way of bringing in prior learning into our algorithms without direct
human interference. As a result, a potential future work could be incorporating sequential search
strategies such as Bayesian Optimization, which distinguishes itself from Grid Search and Random
Search as it takes into account past evaluations in choosing the parameter sets to evaluate next.

9 Conclusion

In the past, the parameter search over an input parameter space is normally conducted based on past
experiences, one parameter at a time. In spite of such inefficiency and tediousness, these parameters
could easily become outdated, not to mention that some optimal parameters may not extend beyond
an HPC platform given the rapid changes in terms of hardware and software. Hence, implementing an
efficient automated tuning framework with high extensibility to identify and optimize over the values
for optimal parameters is especially critical for high-resolution simulations on high performance
computing systems.

6



A A Sample Tuning Ranges

The brackets [lower_bound, upper_bound] specify the lower and upper bound (inclusive on both
ends) for each parameter under the ParameterList.

1 type: RELAXATION
2 ParameterList:
3 ’relaxation: type’: MT Gauss -Seidel
4 ’relaxation: sweeps ’: [1, 3] # positive integer
5 ’relaxation: damping factor ’: [0.5, 1.5] # positive real number
6 type: RELAXATION
7 ParameterList:
8 ’relaxation: type’: Two -stage Gauss -Seidel
9 ’relaxation: sweeps ’: [1, 3] # positive integer

10 ’relaxation: inner damping factor ’: [0.3, 1.8] # positive real
number

11 type: CHEBYSHEV
12 ParameterList:
13 ’chebyshev: degree ’: [1, 6] # positive integer
14 ’chebyshev: ratio eigenvalue ’: [10., 50.] # positive real number
15 ’chebyshev: eigenvalue max iterations ’: [5, 100] # positive

integer

B Noise Reduction for Grid Search

(a) With a single round (b) With 3 rounds

Figure 3: This showcases the noise reduction by choosing the median value from multiple rounds of simulations
by grid search.

7


	Mentors
	Faculty Sponsors
	Project Background and Problem Statement
	Data
	Offline data
	Real-time data

	Methodology
	Application
	An Offline Autotuning Framework
	Implementation
	Experiments

	A Real-time Autotuning Framework
	Implementation
	Experiments


	Analyses
	Grid Search vs. Random Search
	Manual Tuning vs. Autotuning

	Challenges and Future Work
	Conclusion
	A Sample Tuning Ranges
	Noise Reduction for Grid Search

